

SHOAL CREEK WATERSHED ACTION PLAN Stakeholder Meeting: January 30, 2019

Welcome & Agenda Overview

Watershed Characterization Report - Update

Status: 2nd draft incorporates stakeholder comments and includes watershed characteristics and current management efforts only

Request: Review and submit comments to joanna@shoalcreekconservancy.org

Copies available today and at: www.shoalcreekconservancy.org/watershedplan

Draft Goal

What will Shoal Creek be like after the Watershed Action Plan is implemented?

Shoal Creek is a model healthy and resilient urban watershed that benefits people and nature and is supported by a well-informed and engaged community.

SHOAL CREEK WATERSHED PROTECTION PLAN WATER QUALITY MODELING UPDATE

Tom Hegemier, P.E., D.WRE. CFM January 30, 2019

Water Quality Modeling Purpose

- Quantify pollutant loads
 - Existing and future land use conditions
- Quantify needed load reductions
 - State standards
 - Stakeholder watershed goals
- Evaluate pollutant management measures
- Include in the Watershed Characterization Report
- Supports Watershed Protection Plan development

Water Quality Constituents

- Modeled pollutants
 - Bacteria
 - Total suspended sediment
 - Total nitrogen
 - Total phosphorus
- Criteria
 - State standards for bacteria
 - Screening criteria/stakeholder input to establish thresholds for other pollutants

7

Water Quality Modeling Approach

- Load Duration Curves
 - Shoal Creek at 12th Street Gage, insufficient data for other sites
 - Flow and water quality data
 - (USGS and the City)
- SELECT Model
 - 12 watershed subareas
 - Land use provided by the City
 - Determined loadings for current and future conditions
 - Can evaluate management measures
 - Prioritize sub-watersheds

Pollutant loads based on land use and stormwater runoff

Pollutant concentrations are higher in densely development areas

Watershed impervious cover = 53%

Most of the watershed was developed before City of Austin water quality regulations, 21% IC treated

Healthy watersheds IC typically < 10%

Water Quality Conditions

- City of Austin Environmental Integrity Index
 - Shoal Creek 6th lowest water quality out of 49 watersheds
 - Poor riparian vegetation
 - Unstable channels
 - Elevated nutrients
 - Fecal contamination
 - Toxins in sediment

Modeling Constraints

- Data is scarce and dated, uncertainty about loadings and desired reductions
- Creek is intermittent only flowing directly after rainfall events, dry over half the time, limited baseflow data
- Fecal coliform is older proxy for bacteria (e. coli now used), but not enough observed data to use e. coli in analysis
- Observed fecal coliform numbers very high, but many observations from 1980's and 1990's, prior to Austin Clean Water Program, which removed many wastewater lines from creek beds.

Modeling Process

- Use SELECT to quantify pollutant loads
- Use SELECT to assess management measures and load reductions
- Apply findings to the Load Duration Curves to assess benefits and/or compliance with standards/targets

Modeling Hypothetical Example

- Rain gardens to treat the entire watershed
- Sized to retain the runoff from a 0.5 inch storm

Preliminary SELECT Output - TSS

Subarea	Drainage Area (acres)	Existing (lbs/yr)	Future (Ibs/yr)	Future w/ rain garden ½" ROV (Ibs/yr)	BMP Volume (acre-ft)
1	942.95	185,129	206,692	171,599	39.29
2	996.80	156,683	165,332	128,806	41.53
3	959.85	122,716	133,919	98,949	39.99
4	761.56	111,541	121,159	93,256	31.73
5	339.31	51,003	56,497	44,007	14.14
6	300.93	35,660	37,664	26,639	12.54
7	699.58	95,442	100,237	74,656	29.15
8	383.35	36,240	36,255	22,000	15.97
9	1022.38	135,767	139,189	101,961	42.6
10	527.44	75,557	75,681	56,361	21.98
11	432.73	60,314	64,106	48,086	18.03
12	932.26	144,357	157,418	122,771	38.84
Total	8299.14	1,210,409	1,294,149	989,089	345.79

DOUCE.

Example Evaluation Summary

Total suspended sediment

- Total rain garden volume = 345 acre-feet
- Assuming 1-foot depth, surface area = 345 acres
- Pounds managed per year = 305,000
- Equivalent to about 95 dump trucks per year

Priority watersheds – Upper watershed commercial areas

- Downtown area

Bacteria Load Duration Curve

Nitrogen Load Duration Curve

DOUCE

Next Steps

- Finalize draft modeling report by the end of February
- Respond to TCEQ and stakeholder comments
- Use models in the watershed planning process, establish target criteria
- Compare with City of Austin Environmental Integrity Index to provide context
- Intensive targeted monitoring program would help establish a better "baseline" to assess desired pollutant reductions
 - Not included in the project scope

Part 2: Working Groups

Groups:

- Water (Leader: Jennifer Walker)
- Land Stewardship (Leader: Ranleigh Hirsh)
- Education & Outreach (Leader: Ryan Spencer)
- Implementation (Leader: Joanna Wolaver)

Today: 2nd meeting of groups, identify objectives related to the purpose of your working group

Wrap-Up & Public Comments

Partners

And Shoal Creek Stakeholders

This cooperative project is funded in part by the Texas Commission on Environmental Quality (TCEQ) through a United States Environmental Protection Agency (EPA) grant.